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ABSTRACT 
 

In rigid plastic analysis one of the most widely applicable methods that is based on the 

minimum principle, is the combination of elementary mechanisms which uses the upper 

bound theorem. In this method a mechanism is searched which corresponds to the smallest 

load factor. Mathematical programming can be used to optimize this search process for 

simple frames, and meta-heuristic algorithms are the best choice for larger frame structures. 

In this paper, the Colliding Bodies Optimization (CBO) and its enhanced variant (ECBO) 

are employed to optimize the process of finding an upper bound for the collapse load factor 

of the planar frames. The efficiency of these algorithms is compared to that of the Particle 

Swarm Optimization (PSO) algorithm through four numerical examples form multi-bay 

multi-story frames and pitched roof frames. 
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1. INTRODUCTION 
 

The minimum and maximum principles are the basis of nearly all the analytical methods 

used for plastic analysis and design of frames [1]. One of the most widely applicable 

methods based on the minimum principle is the combination of elementary mechanisms, 

developed by Neal and Symonds [2–4]. However this method, aside from all of its 
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capabilities, has certain limitations that prevent its common application. For instance, as the 

structure becomes more complex, an extensive number of mechanisms have to be 

considered, not to mention the pains of combining them to find the actual collapse 

mechanism. This situation calls for the development of a methodology capable of finding 

solutions as fast and accurate as possible while accounting for the natural compromise that 

has to be made. This is where the heuristic and meta-heuristic algorithms come into the 

scene. 

The problem of plastic analysis and design of frames having rigid joints was solved by 

Charnes and Greenberg [5] using the linear programming, as early as 1951. Further progress 

in this field can be traced to Baker and Heyman [1], Munro [6], Livesley [7], Watwood [8] 

and Kaveh and Mokhtarzadeh [9] among others. The progress during 1955–1977 is well 

documented in Ref. [10], and a survey of research results achieved in the subsequent 25 

years on limit analysis and design in plasticity has been performed by Maier et al. [11]. 

Application of algorithmic heuristics dates back to Kohama et al. [12], Kaveh and Khanlari 

[13], Kaveh and Jahanshahi [14], Kaveh et al. [15]. 

Over 1990, many optimization algorithms have been developed. Genetic algorithms [16] 

(GA) and particles swarm optimization [17] (PSO) are the most common algorithms widely 

used by researchers. The PSO is based on sharing information between each particle in the 

swarm and update particle's position based on its memory and data gained by other particles.  

This work focuses on two recently developed meta-heuristic algorithms, namely 

Colliding Bodies Optimization (CBO) and Enhanced Colliding Bodies Optimization 

(ECBO). CBO is one of the most simple and successful optimization techniques introduced 

by Kaveh and Mahdavai [18]. ECBO is the enhanced variant of the COB proposed by Kaveh 

and Ilchi Ghazaan [19]. A book is published recently covering many applications of these 

methods [20]. 

CBO is a population-based stochastic optimization algorithm based on the governing 

laws of one dimensional collision between two bodies from the physics. Each agent is 

modeled as a body with a specified mass and velocity. A collision occurs between pairs of 

objects to find the global or near-global solutions. 

ECBO is the modified version of the CBO that uses a memory to save some best 

solutions and utilizes a technique to escape from local optima. 

After this section, the paper is organized as follows. Section 2 briefly introduces the 

method of combination of elementary mechanisms. In Section 3 adaptations of the CBO and 

ECBO algorithms to the problem of finding the collapse load factor are presented. Section 4 

studies various design examples to verify the efficiency of these algorithms. Finally, the 

concluding remarks are provided in Section 5. 

 

 

2. COMBINATION OF ELEMENTARY MECHANISMS  
 

In the method of combination of elementary mechanisms, the load factor is obtained using 

the virtual work theorem. Rotations and displacements are considered to be virtual, and 

internal work and external work are computed using these virtual quantities; then the load 

factor for a specific mechanism is described as ratio of the internal virtual work to the 

external virtual work: 
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 work virtualexternal

 work virtualinternal
λ   (1) 

 

The external virtual work is computed by summing all the joint forces P multiplied by 

corresponding joint displacements d in the direction of those forces: 

 

dP
t  work  virtualExternal   (2) 

 

The internal virtual work is the sum of all rotations at active hinges multiplied by the 

plastic moments of members in which active hinges form. However, since the plastic 

moments pM  always resist the rotations at hinges r, the internal work is always positive and 

therefore the absolute values of rotations should always be used [1]: 

 
t
pInternal virtual work = M r

 
(3) 

 

If a frame has N cardinal sections and its static degree of indeterminacy is equal to R, 

then there will be (N−R) elementary mechanisms for this frame, and all the other collapse 

mechanisms can be constructed by combining these elementary mechanisms. Elementary 

mechanisms cannot be acquired by combining any other mechanisms. From these (N-R) 

elementary mechanisms for a frame, some are joint mechanisms (equal to the number of 

joints) and the remaining mechanisms are called independent mechanisms. Independent 

mechanisms for rectangular and pitched roof frames are also categorized as sway and beam 

mechanisms [1].  

After generating elementary mechanisms, a search is carried out to find the actual 

collapse mechanism by checking every possible combination of elementary mechanisms in 

order to reduce the load factor. The criterion for a mechanism to be the actual collapse 

mechanism is that there is no possibility of combining it with other elementary mechanisms 

without increasing the load factor and also its load factor should be lower than any possible 

collapse mechanism that can be constructed for the frame. For more information about 

terminology and details of combination of mechanisms, one may refer to Ref. [1].  

 

 
Figure 1. The pairs of CBs for collision [18] 
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3. CBO AND ECBO FOR FINDING THE COLLAPSE LOAD FACTOR OF 

FRAMES 
 

3.1 Colliding bodies optimization (CBO) 
Colliding bodies optimization (CBO) is a new meta-heuristic search algorithm that is 

developed by Kaveh and Mahdavi [18]. In this technique, one object collides with other 

object and they move towards a minimum energy level. The CBO is simple in concept and 

does not depend on any internal parameter. Each colliding body (CB), Xi, has a specified 

mass defined as: 
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Where fit(i) represents the objective function value of the ith CB and n is the number of 

colliding bodies. 

In order to select pairs of objects for collision, CBs are sorted according to their mass in a 

decreasing order and they are divided into two equal groups: (i) stationary group, (ii) 

moving group (Fig. 1). Moving objects collide to stationary objects to improve their 

positions and push stationary objects towards better positions. The velocities of the 

stationary and moving bodies before collision (vi) are calculated by 
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The velocity of stationary and moving CBs after the collision (v'i) are evaluated by 
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1
iter

iter


 
(9) 

 

Where iter and itermax are the current iteration number and the total number of iteration 

for optimization process, respectively. ε is the coefficient of restitution (COR). 

New positions of each group are updated by 
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where xi
new, xi and v'i are the new position, previous position and the velocity after the 

collision of the ith CB, respectively. rand is a random vector uniformly distributed in the 

range of [-1,1] and the sign ‘‘°’’ denotes an element-by-element multiplication. 

The flowchart of CBO algorithm is depicted in Fig. 2.  

 

 
Figure 2. Flowchart of the CBO algorithm [18] 

 

3.2 Enhanced colliding bodies optimization (ECBO) 
In order to improve CBO to get faster and more reliable solutions, Enhanced Colliding 

Bodies Optimization (ECBO) was developed which uses memory to save a number of 

historically best CBs and also utilizes a mechanism to escape from local optima [19]. The 

flowchart of ECBO is shown in Fig. 3. The steps of this technique are given as follows: 
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Level 1: Initialization 

The initial positions of all CBs are determined randomly in an m-dimensional search 

space. 

nixxrandomxxi ,...,2,1),( minmaxmin
0

   (12) 

 

where xi
0 is the initial solution vector of the ith CB. Here, xmin and xmax are the bounds of 

design variables; random is a random vector which each component is in the interval [0, 1]. 

 

 
Figure 3. Flowchart of the ECBO algorithm [19] 

 

Level 2: Search 

Step 1: The value of mass for each CB is evaluated according to Eq. (4). 

Step 2: Colliding memory (CM) is utilized to save a number of historically best CB 

vectors and their related mass and objective function values. Solution vectors which are 
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saved in CM are added to the population and the same number of current worst CBs are 

deleted. Finally, CBs are sorted according to their masses in a decreasing order. 

Step 3: CBs are divided into two equal groups: (i) stationary group, (ii) moving group 

(Fig. 1). 

Step 4: The velocities of stationary and moving bodies before collision are evaluated by 

Eqs. (5) and (6), respectively. 

Step 5: The velocities of stationary and moving bodies after the collision are evaluated 

using Eqs. (7) and (8), respectively. 

Step 6: The new position of each CB is calculated by Eqs. (10) and (11). 

Step 7: A parameter like Pro within (0, 1) is introduced and it is specified whether a 

component of each CB must be changed or not. For each colliding body Pro is compared 

with rni (i=1,2,…,n) which is a random number uniformly distributed within (0,1). If rni < 

pro, one dimension of the ith CB is selected randomly and its value is regenerated as 

follows: 

 
).( min,max,min, jjjij xxrandomxx 
 (13) 

 

where xij is the jth variable of the ith CB. xj,min and xj,max respectively, are the lower and 

upper bounds of the jth variable. In order to protect the structures of CBs, only one 

dimension is changed. 

Level 3: Terminal condition check 

After the predefined maximum evaluation number, the optimization process is 

terminated. 

 

 

4. NUMERICAL EXAMPLES 
 

This section contains the implementations of the proposed algorithms in MATLAB® and 

their applications to four examples. In order to provide a measure of their comparative 

performance, each example is solved by all the algorithms. To contrast the efficiency of 

these algorithms, in each case, the convergence history of all the algorithms, demonstrating 

the load factor against the iteration number for each algorithm, are illustrated. In addition, 

comparisons are made with the exact results, further validating the merits of our obtained 

solutions. In the ECBO algorithm, the values of cMs (Colliding memory size) and pro, are 

set to 2 and 0.3, respectively. 

 

4.1 Example 1 

A three-bay and three-story frame is considered as shown in Fig. 4. Plastic moments are 

provided for each member. For all the algorithms, the number of populations is 20 and the 

number of iterations is considered as 20. The actual collapse mechanism is obtained by 

checking all possible combination of mechanisms is 1.8730 (see Table 1). The mechanism 

corresponding to the result of the best algorithm is shown in Fig. 5. The convergence 

histories are illustrated in Fig. 6. 
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Table 1: Load factor obtained for Example 1 using different algorithms 

Exact load factor PSO CBO ECBO 

1.8730 1.9653 1.9012 1.8730 

 

 
 

Figure 4. A three-bay and three-story frame: geometry, loading and plastic moments [21] 

 

 
 

Figure 5. A three-bay and three-story frame: actual collapse mechanism [21] 
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Figure 6. Convergence history of the three-bay and three-story frame 

 

4.2 Example 2 

A four-bay and four-story frame is considered as shown in Fig. 7. Plastic moments are 

provided for each member. For all the algorithms, the number of populations is set to 20 and 

the number of iterations is considered as 20. The actual collapse load factor of the 

mechanism is obtained as 1.8880 by checking all possible combination of mechanisms (see 

Table 2). The mechanism corresponding to the result of the best algorithm is shown in Fig. 

8. The convergence histories are illustrated in Fig. 9.  

 
Table 2: Load factor obtained for Example 2 using different algorithms 

Exact load factor PSO CBO ECBO 

1.8880 1.9471 1.8880 1.8880 

 

 
Figure 7. A four-bay and four-story frame: geometry, loading and plastic moments [21] 
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Figure 8. A four-bay- and four-story frame: The actual collapse mechanism 

 

 

Figure 9. Convergence history of the four-bay and four-story frame 

 

4.3 Example 3 

Consider a pitched roof frame as shown in Fig. 10. All of the members of this frame have a 

full plastic moment equal to 5kN.m. For all algorithms, number of population is 10 and the 

number of iteration is 20. The actual collapse mechanism is obtained by checking all 

possible combination of mechanisms is 0.1626 (see Table 3). The mechanism corresponding 

to the result of the best algorithm is shown in Fig. 11. The convergence histories are 

illustrated in Fig. 12. 

 
Table 3: Load factor obtained for Example 3 using different algorithms 

Exact load factor PSO CBO ECBO 
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Figure 10. A pitched roof portal frame: geometry and loading [1] 

 

 
Figure 11. A pitched roof portal frame: Actual collapse mechanism [1] 

 

 

Figure 12. Convergence history of the pitched roof portal frame 
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4.4 Example 4 

Consider a two-bay pitched roof frame as shown in Fig. 13. All of the members of this frame 

have a full plastic moment equal to 5kN.m. For all the algorithms, the number of population 

is taken as 20 and the number of iterations is set to 20. The actual collapse load factor is 

obtained by checking all possible combinations of the mechanisms as 0.2083 (see Table 4). 

The mechanism corresponding to the result of the best algorithm is shown in Fig. 14. The 

convergence histories are illustrated in Fig. 15. 

 
Table 4: Load factor obtained for Example 4 using different algorithms 

Exact load factor PSO CBO ECBO 

0.2083 0.3944 0.2187 0.2094 

 

2.0 m

8 * 3.0 = 24 m

2 kN

1 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

2 kN

1 kN

3 kN

6 kN

3 kN

6 kN
4.0 m

3

2

1

4

5

6

11

10

9

8
7

14

12

13

15

16

17

22

21

20

19
18

23

24

 
 

Figure 13. A two-bay pitched roof portal frame: geometry and loading [1] 
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Figure 14. A two-bay pitched roof portal frame: Actual collapse mechanism 
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Figure 15. Convergence history of the two-bay pitched roof portal frame 

 

 

5. CONCLUDING REMARKS 
 

In this paper, the CBO and ECBO algorithms are utilized to optimize the process of finding 

the collapse load factor of planar frames. Comparison of the performance of these 

algorithms in Section 4 shows the efficiency of the proposed CBO and ECBO algorithms for 

the analysis of the frame structures. From the convergence curves it can be seen that the 

ECBO convergence to the solution faster than other algorithms and all algorithms often 

results in the exact load factor of the studied frame structures. In the complex problems such 

as the Example 4, the number of population and number of iterations are high for the 

solution. In such condition, collapse load factor is close to the load factor, but obtained 

mechanism can be non-correct. 
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